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Abstract—Verification of complex datapath circuits such as 
floating-point dividers are known to be a challenging problem. In 
this paper, we present a formal verification methodology to verify 
floating-point (FP) dividers. In general, floating-point division 
unit builds around a fixed-point division implementation. Our 
solution performs a two-step verification.  

The first step verifies the fixed-point division implementation. 
We target fixed-point division algorithms that compute a fixed 
number of quotient bits in each iteration. This step uses a 
combination of equivalence checking and assertion-based 
property checking techniques. We used property checking to show 
correctness of radix-2 restoring division and equivalence checking 
to show equivalence between the radix-2 restoring division and a 
prescaled radix-4 non-restoring division.  

The second step uses equivalence checking to compare the 
floating-point divider with a software golden reference of FP 
division. In this step we assume the fixed-point division is working 
correctly to make the proof tractable. Using the proposed steps, 
verification of single precision FP divider took 1 hour 30 minutes 
and double precision FP divider took 7 hours and 30 minutes.  

Keywords—formal verification, equivalence checking, datapath 
verification, floating-point division. 

I. INTRODUCTION 

Circuits that perform division and that compute a square root 
are used extensively in hardware designs. There have been many 
cases in which a bug in a circuit implementation of a 
mathematical operator had a significant impact on the 
company’s finances.  For example, in one well-publicized 
instance, a bug in a floating-point division circuit cost the 
company hundreds of millions of dollars [1]. Therefore, it is very 
important to guarantee the correctness of these operators. 

Traditional verification testing techniques such as random 
testing and scenario-based testing do not scale well and do not 
guarantee completeness. Formal verification has emerged as an 
alternative to ensure the correctness of hardware designs and 
overcoming several of the limitations found in traditional testing 
techniques. Moreover, advances in SAT solvers, equivalence 
checkers, and model checkers have allowed engineers to 
formally verify many properties of floating-point designs. 

Verification of fixed-point division and square root 
algorithms has been an active area of research. One of the recent 
publications in this area by Melquiond et al. [6] require expertise 
in automated solvers such as Gappa. Another publication by 
Scholl et al. [2] presents a solution using Symbolic Computer 

Algebra (SCA). Expertise in SCA is required for extending this 
technique. In the paper they state that: 

We were able to prove that the canonical polynomials for 
pseudo-boolean functions occurring at cuts between stages have 
exponential sizes. 

They were able to avoid the exponential behavior through 
stronger propagation and exploitation of constraints for a very 
specific implementation of division. These techniques would 
require significant changes on other variations of the division 
algorithm such as saving the result in a carry save format. 

Theorem provers have been widely used to prove correctness 
of systems. They are either fully automatic: SMT solvers, Alt-
Ergo, CVC5 and Gappa; or interactive: ACL2 and Coq. For 
example, Gappa [6] has been used to prove that a 28-line C 
program computes the square root of an integer. In another 
work, Russinoff [7] has provided a mechanical mathematical 
proof of the correctness of the FSQRT using the ACL2 theorem 
prover. Harrison [10] has formally verified various IA-64 
floating-point and integer division algorithms using the HOL 
Light theorem prover. These techniques require an expert user 
driving a theorem prover. As the RTL changes it becomes 
challenging to update the proofs. 

Verification of floating-point divider implemented in RTL 
against the SoftFloat C model was successfully verified in [8]. 
They verified single precision division of the DesignWare [11] 
model which used a division operator inside FP RTL. Our work 
extends this to verification of double precision radix-2 restoring 
division and a prescaled radix-4 non-restoring division. 

As stated earlier, the proposed solution performs a two-step 
verification. The first step verifies the fixed-point division 
implementation. The second step verifies the floating-point 
logic by comparing it with the SoftFloat [3] C model. 

The fixed-point division verification has been extensively 
studied [2][6][7]. All the research in this area has focused on 
verification of the divider as a single unit. There are multiple 
division algorithms and optimizations which make this a very 
hard problem. Our approach is unique in the way that it requires 
the user to identify the partial quotient and remainder after each 
iteration. This breaks the problem down into smaller sub-
problems that can be verified by current state-of-the-art solvers. 
Proposed approach applies to any iterative division algorithm 
that computes fixed number of quotient bits in each iteration. 

Once we have verified the FP radix-2 restoring division we 
then use it as the specification for the verification of the FP 



prescaled radix-4 non-restoring division implementation that is 
used inside the FP divider. We make the equivalence checking 
problem tractable by breaking down the problem into a series of 
internal equivalence problems, one for each partial quotient and 
remainder after each iteration. 

Since the introduction of SRT dividers in 1958 [4], 
significant enhancements have been made in the design of fixed-
point dividers. See [5] for more details. In this paper redundant 
quotient values and prescaling are used to improve performance. 
Significant mathematical analysis is done to identify the next 
quotient bit by using part of the divisor and part of remainder in 
carry save format. An error in this computation will result in 
design bugs that will be hard to catch using random or targeted 
simulation. 

Further, even if the fixed-point division is formally verified, 
there are a lot of special cases associated with floating-point 
arithmetic. The IEEE standard defines handling of special cases 
that include positive and negative versions of NaN, Infinity, and 
Zero. Also, there are five exception flags defined in the IEEE 
standard: Invalid operation, Division by Zero, Overflow, 
Underflow, Inexact calculation. 

This paper is organized as follows. In the next section we 
give a short introduction to the SoftFloat library and briefly  
explain the reference golden model. This is followed by a 
description of our implementation of the radix-2 restoring 
division and the prescaled radix-4 non-restoring division. Next, 
we present our verification flow for both these dividers. Finally, 
the experimental results of this work are presented. 

II. REFERENCE MODEL (SOFTFLOAT LIBRARY) 

SoftFloat is a software implementation of binary floating-
point that conforms to the IEEE Standard for Floating-Point 
Arithmetic. It supports the floating point formats that our 
proposed flow verifies: 32-bit single precision, and 64-bit 
double precision. It supports the five rounding modes specified 
in the IEEE standard, and can be configured to emulate Intel x86 
and ARM architectures, among others. See [3] for more details. 

The SoftFloat library was chosen as a reference model 
because it has been around for over two decades. During this 
time, it has been extensively used by the community and all the 
identified issues have been addressed. SoftFloat library function 
f32_div implements the division algorithm. This function was 
instantiated in a top-level C function as follows: 

// inputs 
float32_t op1; float32_t op2; uint8_t rndmode; 
// outputs 
float32_t res; uint8_t   flags; 
 
softfloat_detectTininess =   
softfloat_tininess_afterRounding; //IEEE TINY signal 
softfloat_roundingMode = rndmode; // rounding mode 
softfloat_exceptionFlags = 0;     // initialize to 0 
res = f32_div(op1, op2);          // do the division 
flags = softfloat_exceptionFlags; // extract flags 

III. IMPLEMENTATION OF DIVISION 

Details of the two divider implementations are as follows. 
Figure 1 presents a typical floating-point division datapath. The 

PREOP block unpacks the inputs, normalized denorm mantissa 
values, and detects if the operands are exceptional. 

For exceptional cases the results (both value and exception 
flags) are predefined, and the flow passes directly from the 
PREOP block to the POSTOP block. 

A. Implementation of radix-2 restoring division 

The fixed-point radix-2 division is define in the OP block. 

Consider the computation of the quotient X/Y of two 
floating-point operands of precision p, e.g., p=53 for double 
precision. The normalized representation of X and Y are: 

X= (-1)s 2e N   and   Y = (-1)t 2f D 

And   N ∈ [1, 2)   and   D ∈ [1, 2) 

So   X/Y = (-1)s-t 2e-f N/D     where     ½ < N/D < 2 

Given that the p-bit significands N and D have (p-1)-bit 
fractions, their binary points can be removed without changing 
N/D; this allows us to treat N and D as p-bit unsigned integers.  

For any nonnegative index j, integer long division tells us 
that there is a pair of integers Q (quotient) and R (remainder) 
which satisfy the invariant:  

2j N/D = Q + R/D [Equation 1] 

While there are an infinite number of integer pairs {Q, R} that 
satisfy this invariant, long division produces the unique integer 
pair {Qj, Rj}, called the standard pair for stage j, for which 0 ≤ Rj 
< D. It follows from ½ ≤ N/D < 2 and 0 ≤ Rj < D that Qj is a 
(j+1)-bit unsigned integer, so Qj / 2j is a significand with a j-bit 
fraction whose integer bit is 0 when N < D and 1 otherwise, and 
Rj is a p-bit unsigned integer. When rounding the quotient X/Y 
to precision p, it suffices to obtain {Qp+1, Rp+1} because Qp+1 
always includes the round-bit while Rp+1 provides the additional 
information needed to form the sticky-bit.  

From the invariant for stages j and j+1 we find that {Qj, Rj} 
satisfy the radix-2 digit-recurrence 

         Qj+1 = 2Qj + dj+1                [Equation 2] 

 Rj+1 = 2Rj – dj+1D         [Equation 3] 

Figure 1: Floating-point division block diagram. 



where digit dj+1 ∈ {0, 1}. Equations 2 and 3 are implemented by 
the OP block. 

B. Implementation of prescaled radix-4 non-restoring 
division 

The division block diagram is similar to Figure 1. The main 
difference is in block OP. This was changed from radix-2 
restoring fixed-point division to prescaled radix-4 non-restoring 
fixed-point division. The division implementation follows the 
architecture proposed in [5]. 

 Any integer pair {qj, rj} that satisfies Equation 1 is related to 
the standard pair {Qj, Rj} as follows: 

{Qj, Rj} = {qj – c, rj + cD} [Equation 4] 

where c is the unique integer for which 0 ≤ rj + cD < D. 
Typically, -D ≤ rj < D and so c = (rj < 0) ? 1 : 0. 

Consider a higher-radix division with radix β = 2m and the 
digit set Фb composed of all integers whose magnitude is at most 
b. As there are at least β digits required, (β-1)/2 ≤ b ≤ β-1. The 
radix-β digit-recurrence generates the integer pairs {qj,rj}:  

qj+m = βqj + dj+m  [Equation 5] 

rj+m = βrj – dj+mD  [Equation 6] 

where the digits dj+m∈ Фb. The computation of βrj – dj+mD takes 
the form of an integer multiply-add, so implementations often 
use redundant representations of the remainder to shorten this 
datapath. Figure 2 below presents a procedure that implements 
one stage of radix-β digit-recurrence division. 

This digit-recurrence algorithm assumes that:  

| rj / D | ≤ ρ  [Equation 7] 

where ρ = b / (β – 1) is the so-called redundancy factor; we 
assume that ½ < ρ ≤ 1. So, for a specific range of values of D, 
procedure SingleStage must have the following property: 

If: | rj | ≤ ρDj and Dj = D 

Then: | rj+m | ≤ ρDj+m and Dj+m = D [Property 1] 

The proposed implementation in [5] uses β = 22 = 4 and b = 
2 with carry-save remainder, hence the redundancy factor ρ = 
2/3. It also relies on operand scaling. Without operand scaling,  
the delay associated with a radix-4 step would be twice 
compared to a radix-2 step and hence would not result in a 
performance advantage. With the proposed operand scaling, 
quotient digit selection is independent of the divisor and only 
requires 6 bits of the assimilated partial remainder. According to 
[5], this results in a speedup of 1.20 to 1.45. 

IV. PROOF METHODOLOGY 

For verification, we use the Synopsys VC Formal DPV [9] 
tool. DPV is primarily a C++ to RTL transactional equivalence 
checker. It also has proprietary specialized commands to aid a 
user to verify an implementation of fixed-point division. In our 
work we have used both the above features.  

A. Verification of radix-2 restoring division 

Our solution uses a two-step approach to verify the division 
algorithm. These steps are: 

1) Verify the fixed-point division 

The fixed-point division in the OP block in Figure 1 is 
implemented using the radix-2 restoring division. This is 
verified by using command solveNB_division in the DPV tool. 
The user interface of this command is: 

   solveNB_division k <getDividend> <getDivisor> 
     <getQuotient> <getRemainder> 
     <inputAssumptions> <identifier> 
 

The functions getDividend/getDivisor are used to specify 
dividend and divisor signals respectively. The functions 
getQuotient and getRemainder identify the quotient and 
remainder after each iteration. The tool generates a series of 
properties (lemmas) checking that quotient/remainder is correct 
at each iteration. 

2) Verifying the floating-point division 

Once the fixed-point division was verified, it was replaced 
by the division and modulo primitives using the command 
solveNB_division_assumptions in the DPV tool. Next, the rest 
of the floating-point division functionality was verified using 
equivalence checking. This included the exception flags as 
described in the motivation section. The SoftFloat division 
algorithm was used as a reference model for this verification. 

The C implementation of the division algorithm in SoftFloat 
was making the equivalence checking problem hard as there was 
no internal equivalence point with respect to the RTL. To 
address this issue, we made a change to the SoftFloat library. 
The remainder and the sticky bit were computed in the original 
code as follows: 

sigZ = sig64A / sigB; 
if (! (sigZ & 0x3F))  
  sigZ |= ((uint_fast64_t) sigB * sigZ != sig64A); 

The lower 6 bits are the rounded remainder that are finally 
used to compute the sticky bit. This was modified as follows: 

sigZ = sig64A / sigB; 
sigR = sig64A % sigB; 
sigZ = sigZ << 6 | (sigR != 0); 

Proof sketch for the above change: If N is the numerator, D 
is the denominator, Q is the quotient, and R is the remainder. 
The remainder can be computed as: 

R = N – D * Q = N % D 
The original code was computing the remainder using the 

first method while the new code is using the second method. 
Both methods will produce the same result. A detailed proof has 
been omitted because of lack of space. 

Procedure SingleStage 
  Inputs: qj, rj, Dj 
  Outputs: qj+m, rj+m, Dj+m 
  Digit selection: Choose dj+m∈ Фb  
  qj+m = βqj + dj+m 
  rj+m = βrj – dj+mDj 
  Dj+m = Dj 
End Procedure 

Figure 2: One step of radix-β digit-recurrence division. 



B. Verification of prescaled radix-4 non-restoring division 

In the previous step, the FP radix-2 restoring division was 
proven to be correct. Hence it was used as a reference model for 
this verification.  

The proposed solution compared results after each iteration 
of the division algorithm. This created a problem because in the 
FP prescaled radix-4 non-restoring division: 

1. The operands were scaled. 
2. The results were stored in a carry-save form. 
3. The quotient digits could be from set {-2, -1, 0, 1, 2}. 

Following is an outline of the proof. The reference model 
uses radix-2 digit-recurrence division using digit set {0,1} and 
non-redundant remainder to generate the standard pairs {Qj,Rj} 
for stages j=0,1,2,…,p+1. The implementation model is a radix-
β digit-recurrence division algorithm using digit set Φb and 
redundant remainder that generates the integer pairs {qj,rj} 
starting with j=a (a = (N < D) ? 1 : 0). Modules bound to the 
implementation model convert {qj,rj} into {ℚj, ℝj}, the standard 
pair, for which 0≤  ℝj < D. This involves converting the 
redundant representation of the implementation model 
remainder to nonredundant form and then adjusting the quotient 
and remainder to form {ℚj, ℝj}.   

Figure 3 presents the outline of the DPV proof:  

Here K=⌊(p+1-a)/m⌋ is the largest integer k for which a+KM
≤p+1. If j* is the implementation’s final stage and j*>p+1, 
then the specification does not form {Qj* ,Rj*}. In this case 
Proof_end above combines this final implementation’s stage 
with the rounding logic that forms the final result. 

To the above DPV proof we add properties that are first 
verified and then used as assumptions. Equations 5, 6, and 7 are 
examples of such properties. One goal of doing so is to help 
DPV avoid exploring unreachable portions of the dataspace; 
portions not considered in the design of SingleStage’s digit 
selection logic. Additionally, these properties also helped in 
isolating bugs during development. 

If the implementation uses a prescaled digit-recurrence, then 
the above proof must be modified. Prescaled division replaces 
the computation of NÚD by that of (SN)Ú(SD). The prescaling 
factor is usually determined by the leading fraction bits of D, so 
adding a case-split to the above DPV proof, one case for each 
possible value of S helps with convergence. Because 
2jNÚD=Qj+RjÚD, it follows that 2j(SN)Ú(SD)=Qj+(SRj)Ú(SD) and 
so the implementations’s standard pair is matched to {Qj, SRj} 
formed from the specifications’s {Qj, Rj}. There are several 
choices for computing SRj such as direct multiplication. 

To compare the result, extra logic was added to the prescaled 
radix-4 divider. This computed the final quotient bits and the 
partial remainder after each iteration in the binary format. Next 
assertions were added in the DPV verification to ensure the 
results matched after each iteration. 

V. EXPERIMENTAL RESULTS 

There were three verifications done to verify the 
completeness of the results: 

A. Fixed point radix-2 restoring division 

This was verified using solveNB_division. Verification was 
run on a single core machine. Single precision verification took 
16 seconds and 1.6 GB of memory. Double precision 
verification took 42 seconds and 1.6 GB of memory. 

B. Floating point radix-2 restoring division 

Once the fixed point radix-2 division was verified, the OP 
block was replaced by primitive division and modulo operations. 
Verification of remaining floating-point logic converged in 
under a second on a single core machine for both single and 
double precision radix-2 division. 

C. Floating point prescaled radix-4 non-restoring division 

The FP radix-2 restoring division was used as specification. 
Verification on a SGE grid with 200 cores and 8 GB of memory 
per core completed in 1 hour and 30 minutes for single precision 
division and 7 hours and 30 minutes for double precision 
division. As mentioned in Section IV.B., the radix-4 
implementation is significantly more complex and different 
from the radix-2 implementation with no internal equivalence 
points. This resulted in the runtime increase. 
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Proof_begin: {ℚa, ℝa}={Qa, Ra} 

for j=a,a+m,a+2m,…,a+(K-1)m 

  Proof_j: if {ℚj, ℝj}={Qj, Rj}} \ 

         then {ℚj+m, ℝj+m}={Qj+m, Rj+m} 

Proof_end: final result matches SPEC 
final result 

Figure 3: Outline of assume-guarantee DPV proof. 


