
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Formal Verification of Floating-Point Division
Ashish Kapoor
Synopsys Inc.

Hillsboro, OR, USA
akapoor@synopsys.com

Warren Ferguson
Synopsys Inc.

Hillsboro, OR, USA
warrenf@synopsys.com

Himanshu Jain
Synopsys Inc.

Hillsboro, OR, USA
hjain@synopsys.com

Sudipta Kundu
Synopsys Inc.

Hillsboro, OR, USA
sudiptak@synopsys.com

Abstract—Verification of complex datapath circuits such as
floating-point dividers are known to be a challenging problem. In
this paper, we present a formal verification methodology to verify
floating-point (FP) dividers. In general, floating-point division
unit builds around a fixed-point division implementation. Our
solution performs a two-step verification.

The first step verifies the fixed-point division implementation.
We target fixed-point division algorithms that compute a fixed
number of quotient bits in each iteration. This step uses a
combination of equivalence checking and assertion-based
property checking techniques. We used property checking to show
correctness of radix-2 restoring division and equivalence checking
to show equivalence between the radix-2 restoring division and a
prescaled radix-4 non-restoring division.

The second step uses equivalence checking to compare the
floating-point divider with a software golden reference of FP
division. In this step we assume the fixed-point division is working
correctly to make the proof tractable. Using the proposed steps,
verification of single precision FP divider took 1 hour 30 minutes
and double precision FP divider took 7 hours and 30 minutes.

Keywords—formal verification, equivalence checking, datapath
verification, floating-point division.

I. INTRODUCTION

Circuits that perform division and that compute a square root
are used extensively in hardware designs. There have been many
cases in which a bug in a circuit implementation of a
mathematical operator had a significant impact on the
company’s finances. For example, in one well-publicized
instance, a bug in a floating-point division circuit cost the
company hundreds of millions of dollars [1]. Therefore, it is very
important to guarantee the correctness of these operators.

Traditional verification testing techniques such as random
testing and scenario-based testing do not scale well and do not
guarantee completeness. Formal verification has emerged as an
alternative to ensure the correctness of hardware designs and
overcoming several of the limitations found in traditional testing
techniques. Moreover, advances in SAT solvers, equivalence
checkers, and model checkers have allowed engineers to
formally verify many properties of floating-point designs.

Verification of fixed-point division and square root
algorithms has been an active area of research. One of the recent
publications in this area by Melquiond et al. [6] require expertise
in automated solvers such as Gappa. Another publication by
Scholl et al. [2] presents a solution using Symbolic Computer

Algebra (SCA). Expertise in SCA is required for extending this
technique. In the paper they state that:

We were able to prove that the canonical polynomials for
pseudo-boolean functions occurring at cuts between stages have
exponential sizes.

They were able to avoid the exponential behavior through
stronger propagation and exploitation of constraints for a very
specific implementation of division. These techniques would
require significant changes on other variations of the division
algorithm such as saving the result in a carry save format.

Theorem provers have been widely used to prove correctness
of systems. They are either fully automatic: SMT solvers, Alt-
Ergo, CVC5 and Gappa; or interactive: ACL2 and Coq. For
example, Gappa [6] has been used to prove that a 28-line C
program computes the square root of an integer. In another
work, Russinoff [7] has provided a mechanical mathematical
proof of the correctness of the FSQRT using the ACL2 theorem
prover. Harrison [10] has formally verified various IA-64
floating-point and integer division algorithms using the HOL
Light theorem prover. These techniques require an expert user
driving a theorem prover. As the RTL changes it becomes
challenging to update the proofs.

Verification of floating-point divider implemented in RTL
against the SoftFloat C model was successfully verified in [8].
They verified single precision division of the DesignWare [11]
model which used a division operator inside FP RTL. Our work
extends this to verification of double precision radix-2 restoring
division and a prescaled radix-4 non-restoring division.

As stated earlier, the proposed solution performs a two-step
verification. The first step verifies the fixed-point division
implementation. The second step verifies the floating-point
logic by comparing it with the SoftFloat [3] C model.

The fixed-point division verification has been extensively
studied [2][6][7]. All the research in this area has focused on
verification of the divider as a single unit. There are multiple
division algorithms and optimizations which make this a very
hard problem. Our approach is unique in the way that it requires
the user to identify the partial quotient and remainder after each
iteration. This breaks the problem down into smaller sub-
problems that can be verified by current state-of-the-art solvers.
Proposed approach applies to any iterative division algorithm
that computes fixed number of quotient bits in each iteration.

Once we have verified the FP radix-2 restoring division we
then use it as the specification for the verification of the FP

prescaled radix-4 non-restoring division implementation that is
used inside the FP divider. We make the equivalence checking
problem tractable by breaking down the problem into a series of
internal equivalence problems, one for each partial quotient and
remainder after each iteration.

Since the introduction of SRT dividers in 1958 [4],
significant enhancements have been made in the design of fixed-
point dividers. See [5] for more details. In this paper redundant
quotient values and prescaling are used to improve performance.
Significant mathematical analysis is done to identify the next
quotient bit by using part of the divisor and part of remainder in
carry save format. An error in this computation will result in
design bugs that will be hard to catch using random or targeted
simulation.

Further, even if the fixed-point division is formally verified,
there are a lot of special cases associated with floating-point
arithmetic. The IEEE standard defines handling of special cases
that include positive and negative versions of NaN, Infinity, and
Zero. Also, there are five exception flags defined in the IEEE
standard: Invalid operation, Division by Zero, Overflow,
Underflow, Inexact calculation.

This paper is organized as follows. In the next section we
give a short introduction to the SoftFloat library and briefly
explain the reference golden model. This is followed by a
description of our implementation of the radix-2 restoring
division and the prescaled radix-4 non-restoring division. Next,
we present our verification flow for both these dividers. Finally,
the experimental results of this work are presented.

II. REFERENCE MODEL (SOFTFLOAT LIBRARY)

SoftFloat is a software implementation of binary floating-
point that conforms to the IEEE Standard for Floating-Point
Arithmetic. It supports the floating point formats that our
proposed flow verifies: 32-bit single precision, and 64-bit
double precision. It supports the five rounding modes specified
in the IEEE standard, and can be configured to emulate Intel x86
and ARM architectures, among others. See [3] for more details.

The SoftFloat library was chosen as a reference model
because it has been around for over two decades. During this
time, it has been extensively used by the community and all the
identified issues have been addressed. SoftFloat library function
f32_div implements the division algorithm. This function was
instantiated in a top-level C function as follows:

// inputs
float32_t op1; float32_t op2; uint8_t rndmode;
// outputs
float32_t res; uint8_t flags;

softfloat_detectTininess =
softfloat_tininess_afterRounding; //IEEE TINY signal
softfloat_roundingMode = rndmode; // rounding mode
softfloat_exceptionFlags = 0; // initialize to 0
res = f32_div(op1, op2); // do the division
flags = softfloat_exceptionFlags; // extract flags

III. IMPLEMENTATION OF DIVISION

Details of the two divider implementations are as follows.
Figure 1 presents a typical floating-point division datapath. The

PREOP block unpacks the inputs, normalized denorm mantissa
values, and detects if the operands are exceptional.

For exceptional cases the results (both value and exception
flags) are predefined, and the flow passes directly from the
PREOP block to the POSTOP block.

A. Implementation of radix-2 restoring division

The fixed-point radix-2 division is define in the OP block.

Consider the computation of the quotient X/Y of two
floating-point operands of precision p, e.g., p=53 for double
precision. The normalized representation of X and Y are:

X= (-1)s 2e N and Y = (-1)t 2f D

And N ∈ [1, 2) and D ∈ [1, 2)

So X/Y = (-1)s-t 2e-f N/D where ½ < N/D < 2

Given that the p-bit significands N and D have (p-1)-bit
fractions, their binary points can be removed without changing
N/D; this allows us to treat N and D as p-bit unsigned integers.

For any nonnegative index j, integer long division tells us
that there is a pair of integers Q (quotient) and R (remainder)
which satisfy the invariant:

2j N/D = Q + R/D [Equation 1]

While there are an infinite number of integer pairs {Q, R} that
satisfy this invariant, long division produces the unique integer
pair {Qj, Rj}, called the standard pair for stage j, for which 0 ≤ Rj
< D. It follows from ½ ≤ N/D < 2 and 0 ≤ Rj < D that Qj is a
(j+1)-bit unsigned integer, so Qj / 2j is a significand with a j-bit
fraction whose integer bit is 0 when N < D and 1 otherwise, and
Rj is a p-bit unsigned integer. When rounding the quotient X/Y
to precision p, it suffices to obtain {Qp+1, Rp+1} because Qp+1
always includes the round-bit while Rp+1 provides the additional
information needed to form the sticky-bit.

From the invariant for stages j and j+1 we find that {Qj, Rj}
satisfy the radix-2 digit-recurrence

 Qj+1 = 2Qj + dj+1 [Equation 2]

 Rj+1 = 2Rj – dj+1D [Equation 3]

Figure 1: Floating-point division block diagram.

where digit dj+1 ∈ {0, 1}. Equations 2 and 3 are implemented by
the OP block.

B. Implementation of prescaled radix-4 non-restoring
division

The division block diagram is similar to Figure 1. The main
difference is in block OP. This was changed from radix-2
restoring fixed-point division to prescaled radix-4 non-restoring
fixed-point division. The division implementation follows the
architecture proposed in [5].

 Any integer pair {qj, rj} that satisfies Equation 1 is related to
the standard pair {Qj, Rj} as follows:

{Qj, Rj} = {qj – c, rj + cD} [Equation 4]

where c is the unique integer for which 0 ≤ rj + cD < D.
Typically, -D ≤ rj < D and so c = (rj < 0) ? 1 : 0.

Consider a higher-radix division with radix β = 2m and the
digit set Фb composed of all integers whose magnitude is at most
b. As there are at least β digits required, (β-1)/2 ≤ b ≤ β-1. The
radix-β digit-recurrence generates the integer pairs {qj,rj}:

qj+m = βqj + dj+m [Equation 5]

rj+m = βrj – dj+mD [Equation 6]

where the digits dj+m∈ Фb. The computation of βrj – dj+mD takes
the form of an integer multiply-add, so implementations often
use redundant representations of the remainder to shorten this
datapath. Figure 2 below presents a procedure that implements
one stage of radix-β digit-recurrence division.

This digit-recurrence algorithm assumes that:

| rj / D | ≤ ρ [Equation 7]

where ρ = b / (β – 1) is the so-called redundancy factor; we
assume that ½ < ρ ≤ 1. So, for a specific range of values of D,
procedure SingleStage must have the following property:

If: | rj | ≤ ρDj and Dj = D

Then: | rj+m | ≤ ρDj+m and Dj+m = D [Property 1]

The proposed implementation in [5] uses β = 22 = 4 and b =
2 with carry-save remainder, hence the redundancy factor ρ =
2/3. It also relies on operand scaling. Without operand scaling,
the delay associated with a radix-4 step would be twice
compared to a radix-2 step and hence would not result in a
performance advantage. With the proposed operand scaling,
quotient digit selection is independent of the divisor and only
requires 6 bits of the assimilated partial remainder. According to
[5], this results in a speedup of 1.20 to 1.45.

IV. PROOF METHODOLOGY

For verification, we use the Synopsys VC Formal DPV [9]
tool. DPV is primarily a C++ to RTL transactional equivalence
checker. It also has proprietary specialized commands to aid a
user to verify an implementation of fixed-point division. In our
work we have used both the above features.

A. Verification of radix-2 restoring division

Our solution uses a two-step approach to verify the division
algorithm. These steps are:

1) Verify the fixed-point division

The fixed-point division in the OP block in Figure 1 is
implemented using the radix-2 restoring division. This is
verified by using command solveNB_division in the DPV tool.
The user interface of this command is:

 solveNB_division k <getDividend> <getDivisor>
 <getQuotient> <getRemainder>
 <inputAssumptions> <identifier>

The functions getDividend/getDivisor are used to specify
dividend and divisor signals respectively. The functions
getQuotient and getRemainder identify the quotient and
remainder after each iteration. The tool generates a series of
properties (lemmas) checking that quotient/remainder is correct
at each iteration.

2) Verifying the floating-point division

Once the fixed-point division was verified, it was replaced
by the division and modulo primitives using the command
solveNB_division_assumptions in the DPV tool. Next, the rest
of the floating-point division functionality was verified using
equivalence checking. This included the exception flags as
described in the motivation section. The SoftFloat division
algorithm was used as a reference model for this verification.

The C implementation of the division algorithm in SoftFloat
was making the equivalence checking problem hard as there was
no internal equivalence point with respect to the RTL. To
address this issue, we made a change to the SoftFloat library.
The remainder and the sticky bit were computed in the original
code as follows:

sigZ = sig64A / sigB;
if (! (sigZ & 0x3F))
 sigZ |= ((uint_fast64_t) sigB * sigZ != sig64A);

The lower 6 bits are the rounded remainder that are finally
used to compute the sticky bit. This was modified as follows:

sigZ = sig64A / sigB;
sigR = sig64A % sigB;
sigZ = sigZ << 6 | (sigR != 0);

Proof sketch for the above change: If N is the numerator, D
is the denominator, Q is the quotient, and R is the remainder.
The remainder can be computed as:

R = N – D * Q = N % D
The original code was computing the remainder using the

first method while the new code is using the second method.
Both methods will produce the same result. A detailed proof has
been omitted because of lack of space.

Procedure SingleStage
 Inputs: qj, rj, Dj
 Outputs: qj+m, rj+m, Dj+m
 Digit selection: Choose dj+m∈ Фb
 qj+m = βqj + dj+m
 rj+m = βrj – dj+mDj
 Dj+m = Dj
End Procedure

Figure 2: One step of radix-β digit-recurrence division.

B. Verification of prescaled radix-4 non-restoring division

In the previous step, the FP radix-2 restoring division was
proven to be correct. Hence it was used as a reference model for
this verification.

The proposed solution compared results after each iteration
of the division algorithm. This created a problem because in the
FP prescaled radix-4 non-restoring division:

1. The operands were scaled.
2. The results were stored in a carry-save form.
3. The quotient digits could be from set {-2, -1, 0, 1, 2}.

Following is an outline of the proof. The reference model
uses radix-2 digit-recurrence division using digit set {0,1} and
non-redundant remainder to generate the standard pairs {Qj,Rj}
for stages j=0,1,2,…,p+1. The implementation model is a radix-
β digit-recurrence division algorithm using digit set Φb and
redundant remainder that generates the integer pairs {qj,rj}
starting with j=a (a = (N < D) ? 1 : 0). Modules bound to the
implementation model convert {qj,rj} into {ℚj, ℝj}, the standard
pair, for which 0≤ ℝj < D. This involves converting the
redundant representation of the implementation model
remainder to nonredundant form and then adjusting the quotient
and remainder to form {ℚj, ℝj}.

Figure 3 presents the outline of the DPV proof:

Here K=⌊(p+1-a)/m⌋ is the largest integer k for which a+KM
≤p+1. If j* is the implementation’s final stage and j*>p+1,
then the specification does not form {Qj* ,Rj*}. In this case
Proof_end above combines this final implementation’s stage
with the rounding logic that forms the final result.

To the above DPV proof we add properties that are first
verified and then used as assumptions. Equations 5, 6, and 7 are
examples of such properties. One goal of doing so is to help
DPV avoid exploring unreachable portions of the dataspace;
portions not considered in the design of SingleStage’s digit
selection logic. Additionally, these properties also helped in
isolating bugs during development.

If the implementation uses a prescaled digit-recurrence, then
the above proof must be modified. Prescaled division replaces
the computation of NÚD by that of (SN)Ú(SD). The prescaling
factor is usually determined by the leading fraction bits of D, so
adding a case-split to the above DPV proof, one case for each
possible value of S helps with convergence. Because
2jNÚD=Qj+RjÚD, it follows that 2j(SN)Ú(SD)=Qj+(SRj)Ú(SD) and
so the implementations’s standard pair is matched to {Qj, SRj}
formed from the specifications’s {Qj, Rj}. There are several
choices for computing SRj such as direct multiplication.

To compare the result, extra logic was added to the prescaled
radix-4 divider. This computed the final quotient bits and the
partial remainder after each iteration in the binary format. Next
assertions were added in the DPV verification to ensure the
results matched after each iteration.

V. EXPERIMENTAL RESULTS

There were three verifications done to verify the
completeness of the results:

A. Fixed point radix-2 restoring division

This was verified using solveNB_division. Verification was
run on a single core machine. Single precision verification took
16 seconds and 1.6 GB of memory. Double precision
verification took 42 seconds and 1.6 GB of memory.

B. Floating point radix-2 restoring division

Once the fixed point radix-2 division was verified, the OP
block was replaced by primitive division and modulo operations.
Verification of remaining floating-point logic converged in
under a second on a single core machine for both single and
double precision radix-2 division.

C. Floating point prescaled radix-4 non-restoring division

The FP radix-2 restoring division was used as specification.
Verification on a SGE grid with 200 cores and 8 GB of memory
per core completed in 1 hour and 30 minutes for single precision
division and 7 hours and 30 minutes for double precision
division. As mentioned in Section IV.B., the radix-4
implementation is significantly more complex and different
from the radix-2 implementation with no internal equivalence
points. This resulted in the runtime increase.

REFERENCES
[1] J. Harrison, “Floating-Point Verification Using Theorem Proving,”

Formal Methods for Hardware Verification, SFM, Lecture Notes in
Computer Science, vol 3965, 2006.

[2] C. Scholl, A. Konrad, A. Mahzoon, D. Große and R. Drechsler,
“Verifying Dividers Using Symbolic Computer Algebra and Don't Care
Optimization,” 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, France, 2021, pp. 1110-1115.

[3] J. Hauser, http://www.jhauser.us/arithmetic/SoftFloat.html, Release 3e,
2018.

[4] J. E. Robertson, “A New Class of Digital Division Methods,” IRE
Transactions on Electronic Computers, vol. 7, no. 3, pp. 218–222, 1958.

[5] M. D. Ercegovac and T. Lang, “Simple Radix-4 Division with Operands
Scaling,” IEEE Transactions on Computers, vol. 39, no. 9, pp. 1204-1208,
1990.

[6] G. Melquiond and R. Rieu-Helft, “Formal Verification of a State-of-the-
Art Integer Square Root,” IEEE 26th Symposium on Computer
Arithmetic (ARITH), Kyoto, Japan, 2019, pp. 183-186.

[7] D. Russinoff, “A Mechanically Checked Proof of Correctness of the
AMD K5 Floating Point Square Root Microcode”, Formal Methods in
System Design, 1999.

[8] A. Koelbl, R. Jacoby, H. Jain, and C. Pixley, “Solver Technology for
System-level to RTL Equivalence Checking,” 2009 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2009, pp. 196 – 201.

[9] Synopsys VC Formal, https://www.synopsys.com/verification/static-and-
formal-verification/vc-formal/vc-formal-datapath-validation.html.

[10] J. Harrison, “Formal Verification of IA-64 Division Algorithms,”
Theorem Proving in Higher Order Logics, 13th International Conference,
TPHOLs 2000, Portland, Oregon, USA, August 14-18, 2000.

[11] Synopsys DesignWare Library, https://www.synopsys.com/designware-
ip/soc-infrastructure-ip/designware-library.html

Proof_begin: {ℚa, ℝa}={Qa, Ra}

for j=a,a+m,a+2m,…,a+(K-1)m

 Proof_j: if {ℚj, ℝj}={Qj, Rj}} \

 then {ℚj+m, ℝj+m}={Qj+m, Rj+m}

Proof_end: final result matches SPEC
final result

Figure 3: Outline of assume-guarantee DPV proof.

